Quaternionic submanifolds in quaternionic symmetric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal surfaces in quaternionic symmetric spaces

Theorem. Any compact Riemann surface may be minimally immersed in S. To prove this, Bryant considers the Penrose fibration π : CP 3 → S = HP . The perpendicular complement to the fibres (with respect to the Fubini-Study metric) furnishes CP 3 with a holomorphic distribution H ⊂ T CP 3 and it is well-known that a holomorphic curve in CP 3 tangent to H (a horizontal holomorphic curve) projects on...

متن کامل

Complex Forms of Quaternionic Symmetric Spaces

Some years ago, H. A. Jaffee found the real forms of Hermitian symmetric spaces ([J1], [J2]; or see [HÓ]). That classification turns out to be related to the classification of causal symmetric spaces. This was first observed by I. Satake ([S, Remark 2 on page 30] and [S, Remark on page 87]). Somewhat later, it was independently observed by J. Hilgert, G. Ólafsson and B. Ørsted; see [HÓ], especi...

متن کامل

Almost quaternionic integral submanifolds and totally umbilic integral submanifolds

In literature (Kobayashi and Nomizu, 1963, 1969; Yano and Ako, 1972; Ishihara, 1974; Özdemir, 2006; Alagöz et al., 2012), almost complex and almost quaternionic structures have been investigated widely. These structures are special structures on the tangent bundle of a manifold. A detailed review can be found in Kirichenko and Arseneva (1997). Let us recall some basic facts and definitions from...

متن کامل

A basic inequality of submanifolds in quaternionic space forms

In this article, we establish a sharp inequality involving δ-invariant introduced by Chen for submanifolds in quaternionic space forms of constant quaternionic sectional curvature with arbitrary codimension. Mathematics Subject Classification: 53B25, 53B35.

متن کامل

Harmonic potentials for quaternionic symmetric σ-models

We construct N = 2 superspace Lagrangians for quaternionic symmetric σmodels G/H × Sp(1), or equivalently, quaternionic potentials for these symmetric spaces. They are homogeneous H invariant polynomials of order 4 which are similar to the quadratic Casimir operator of H. The construction is based on an identity for the structure constants specific for quaternionic symmetric spaces. † On leave ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1986

ISSN: 0040-8735

DOI: 10.2748/tmj/1178228405